4 1. Introduction

1.4 How should this be book be‘used?

This book is not intended to be read linearly. It may profitably be read
in various ways by different audiences. Researchers already knowledgeable
in probabilistic expert systems may want to concentrate on the technical
results contained in Chapters 6, 7, 8, 9, and 10, while newcomers to the
area, or those seeking an overview of developments, could focus on the more
descriptive material in Chapters 2, 3, parts of 9 and 10, and 11. Those in-
terested in expert systems but unconcerned with learning algorithms could
read Chapters 2, 3, 6, 7, 8. Chapters 4 and 5 can be used as references for
important definitions and results or for individual study in their own right.
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2
Logic, Uncertainty, and Probability

In this chapter we discuss characteristics of expert systems that relate to
their ability to deal with the all-pervasive problem of uncertainty. We begin
by describing one of the earliest approaches to the computer-based repre-
sentation of expert knowledge, so called rule-based systems. The limitations
of such systems when faced with uncertainty, and some of the alternatives
that have been proposed in the literature, are highlighted. We then fo-
cus on the probabilistic representation of uncertainty, emphasizing both its
strong theoretical basis and its possibility of a subjective interpretation.
Bayes’ theorem then forms the fundamental tool for belief revision, and
‘Bayesian networks’ can be formed by superimposing a probability model
on a graph representing qualitative conditional independence assumptions.
The resulting structure is capable of representing a wide range of complex
domains.

Here we can only give a brief informal overview of the background to
probabilistic expert systems; further reading material is indicated at the
end of the chapter. The World Wide Web is a major resource in such a
rapidly changing area; addresses of specific sites for information and soft-
ware are given in Appendix C.

2.1 What is an expert system?

The Concise Ozford English Dictionary defines expert as “person having
special skill or knowledge.” Informally, an expert is someone you turn to



when you are faced with a problem that is too difficult for you to solve
on your own or that is outside your own particular areas of specialized
xnowledge, and whom you trust to reach a better solution to your problem
than you could by yourself. Expert systems are attempts to crystallize and
codify the knowledge and skills of one or more experts into a tool that
can be used by non-specialists. Usually this will be some form of computer
program, but this need not be the case.
An ezpert system consists of two parts, summed up in the equation:

Expert System = Knowledge Base + Inference Engine.

The knowledge base contains the domain-specific knowledge of a problem,
encoded in some manner. The inference engine consists of one or more
algorithms for processing the encoded knowledge of the knowledge base to-
gether with any further specific information at hand for a given application.
Both parts are important for an expert system. Modern expert systems
strive for the ideal of a clean separation of both components. This allows
the knowledge base to be improved in the light of further information, and
facilitates learning from the experience of making mistakes.

The knowledge base is the core of an expert system; no matter how
sophisticated the inference procedures are for manipulating the knowledge
in a knowledge base, if the content of the knowledge base is poor then the
inferences will be correspondingly poor. Nevertheless it is vital to have a
good inference engine to take full advantage of the knowledge base.

2.2 Diagnostic decision trees

A diagnostic decision tree (also known as a classification tree, flowchart,
or algorithm) is a structured sequence of questions in which each response
determines the next question to ask. The inference process involves sim-
ply walking through the algorithm, selecting the appropriate path from
the answers to the questions contained in the nodes. The system encodes
the expert knowledge in the order and form in which the questions are
structured. At a certain stage a diagnosis or conclusion is reached.

An example of part of a diagnostic decision tree is shown in Figure 2.1.
The background is as follows. The Great Ormond Street Hospital for Sick
Children in London (here abbreviated to GOS) acts as a referral centre for
newborn babies with congenital heart disease. Early appropriate treatment
is essential, and a preliminary diagnosis must be reached using information
reported over the telephone. This may concern clinical signs, blood gases,
ECG, and X-ray. A decision tree, intended to help the junior doctors in
GOS, was constructed from expert judgement. It contained 66 nodes, and
discriminated 27 diagnostic categories in neonates, including lung disease
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masqueféding as heart disease. It was developed and evaluated on 400 cases
(Franklin et al. 1991).
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FIGURE 2.1. Initial part of Great Ormond Street diagnosis decision tree for
diagnosing problems in newborn babies. The first question is Heart rate?, and,
depending on the answer, one of three paths is chosen. For example, if the heart
rate is greater than 200 beats a minute, an immediate diagnosis of Tachyarrhyth-
mie is made. The correct = 3/8 in the figure indicates that in the available

~ database there were 3 cases that went down this path, all of which actually had

a correct final diagnosis of Tachyarrhythmia.

A classification tree does not necessarily require a computer for imple-
mentation and is generally easy to explain and use. If it performs badly for
a particular case, it is usually possible to pinpoint where the wrong branch
was taken. However, despite their appealing nature, classification trees suf-
fer from some drawbacks. An incorrect conclusion can be reached after a
single unexpected response, due for example to observer error. They are
inflexible with respect to missing information. Typically default responses
are assumed when a question cannot be answered; for example, in the GOS
algorithm the default is to assume a negative response where data are miss-
ing. Such systems usually provide little opportunity for adaptation as data
become available. We might interpret their faults as stemming from the
lack of separation of the knowledge base and the inference engine, leading
to a rigid non-modular system.

2.3 Production systems

A more flexible type of expert system is the production system, also called
rule-based system. Such a system has its origin in the attempt to perform
symbolic reasoning using logical-rules. Generally, in a rule-based system,
domain knowledge is encapsulated by a collection of implications, called
production rules, having the form: IF (A; & A; & ... & A;) THEN
B; where {A;} are assertions and B may be an assertion or action. The
following are examples of production rules (taken from Winston (1984)).
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* IF the animal has hair THEN it is a mammal.

-

* IF the animal gives milk THEN it is a mammal.
* IF the animal has feathers THEN it is a bird.

» IF the animal flies & it lays eggs THEN it is a bird.

Since an assertion A; may itself be a consequence of these modular rules,
chains of reasoning are established. A trace through such a chain provides
a degree of explanation for a particular case under consideration.

The collection of rules forms a modular knowledge base in that it is
possible easily to add further rules if desired. Although there is a reliance
on logical reasoning, the questions or rules do not need to be applied in a
predetermined and inflexible manner, as in classification trees. Computer
programs can be written, for example in languages such as LISP or Prolog,
which manipulate such symbolic production rules and logic (see Lucas and
van der Gaag (1991) for examples). The inference engine is embodied as
a control mechanism in the program, which can select rules relevant to
the particular case under consideration and suggest additional assertions
that, if true, could be useful. It can also make valid deductions from a
given set of assertions, a process called forward chaining, and perform the
reverse operation to determine whether assertions exist that can validate a
conjectured property (backward chaining).

However, there are problems with production systems. They focus on
specific assertions, rather than questions with a choice of answer. They
do not automatically distinguish “found to be false” and “not found to
be true” (for example, the question may not be asked). The application
of the laws of logic seems somewhat incomplete, particularly with respect
to negation: for example, they can go from A with A — B to B, but the
reverse, B with A — B may not necessarily lead to A. The number of
rules can grow enormously, and it is necessary to confirm consistency and
eliminate redundancy. Exceptions to the rules have to be dealt with (for
example penguins are birds that do not fly). Finally, the actual chains of
reasoning may become too complex to comprehend.

2.4 Coping with uncertainty

Originally, production systems involved only logical deductions. Although
this can be adequate for representing complex but determinate structures
such as legislation, some problems of a general nature arise. In particular,
the data available on an individual of interest may be inadequate or insuf-
ficiently reliable to enable a conclusion to be reached, or the production
rules themselves may not be logically certain.
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To deal with such situations, we need to quantify uncertainty in the
conclusions. An early attempt by the artificial intelligence (AI) community
concentrated on the logical certainty of the production rules, attaching a
numerical value called a certainty factor (CF) to each production rule. For
example, a system for medical diagnosis might have productions of the
form:

* IF headache & fever THEN influenza (certainty 0.7)
* IF influenza THEN sneezing (certainty 0.9)
* IF influenza THEN weakness {certainty 0.6)

An early example of 'a backward chaining system with certainty factors is
the MYCIN program (Shortliffe and Buchanan 1975), designed to assist doc-
tors in prescribing treatment for bacteriological blood disorders. It employs
about 300 productions and was the first system to separate its knowledge
base from its inference engine.

It is still possible that one production can trigger others in a chain. How-
ever, with the additional numerical structure this requires that the certainty
factors associated with such a chain be combined in some manner. It may
also happen that two or more different productions yield the identical as-
sertion or action, and then the various certainty factors again have to be
combined in some manner. Thus, there arises the need for an algebra or
calculus of certainty factors, as illustrated in Figure 2.2. To postulate or
develop a plausible calculus requires some interpretation to be given to the
meaning of the numbers.

CF(C) —>

C'F(A)——-—> -\ CF(D| c)
F(D| A&B)
) -/r

FIGURE 2.2. Combining certainty factors: How do CF(A), CF(B), CF(C),
CF(D|C), and CF(D| A & B) combine to yield CF(D|A & B & C)?

Certainty factors can be, but have typically not been, regarded as state-
ments of conditional probability.~Although this may seem an appealing
interpretation, there can be major consistency problems with this interpre-
tation. This is because an arbitrary set of such production rules might not
be compatible with any overall probability distribution, and if it is, that



distribution might not be unique. Also, while ‘IF A THEN B’ is logically
equivalent to ‘IF B THEN A’, it is generally false that ‘P(B|A) = ¢’ im-
plies ‘P(A| B) = ¢’. We thus see that the desire for large modular systems
made up of many smaller components or productions, together with local
combination of certainty factors, appears to argue against a probabilistic
interpretation of the certainty factors. This impression led to probability
theory being abandoned by most of the Al community. Instead other ad
hoc rules for manipulating and combining certainty factors were developed,
or alternative measures of uncertainty were developed or applied, that al-
lowed modularity to be retained, for example fuzzy logic (Zadeh 1983) and
belief functions (Dempster 1967; Shafer 1976).

However, in a detailed examination of the MYCIN system, Heckerman
(1986) showed that the “original definition of certainty factors is incon-
sistent with the functions used in MYCIN to combine the quantities.” By
redefining the interpretation of certainty factors he established a connec-
tion with probability theory, specifically that certainty factors can be inter-
preted as monotone functions of likelihood ratios. Furthermore, he showed
that consistency can only be maintained or satisfied in tree-like structures.

Other reasons why probability theory has been proclaimed useless for
expert systems are: first, that it is irrelevant because the uncertainty in the
knowledge that is being represented does not match that of a conceptual
chance mechanism underlying an observable event; secondly, that if a sys-
tem is to be judged by rank order of hypotheses then a non-probabilistic
calculus may be adequate; and thirdly, that a full probability distribution
over many quantities would require assessment of too many numbers. We
now give a short overview of how these perceived barriers were overcome.

2.5 The naive probabilistic approach

In probabilistic terms the basic problem and solution can be stated as
follows. We have a collection of unknown quantities (4, B, ... ), we observe
the true values for a subset of these, and we wish to derive appropriate
expressions of uncertainty about the others. The solution, in principle, is
quite simple. We need a joint distribution over all the unknown quantities,
in which a probability is assigned to each possible combination of values.
Then we must use the laws of probability to condition on the discovered
facts, and hence obtain the appropriate conditional probability of those
quantities that are still unknown. However, this simple solution has the
following snags:

* Generally many probability assignments will be required to form the
joint distribution.

* There is no modularity — just one huge computation.
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* The approach is non-intuitive and lacks explanatory power.

Up to the early 1980s these problems made the application of probability
theory appear infeasible in expert systems, but subsequent theoretical de-
velopments have managed to overcome or mitigate these problems and to
address other conceptual concerns of the early workers in the Al commu-
nity over the use of probability theory. This book deals with developments
in probabilistic networks that address these and other points. The first
of these is the introduction of the subjectivist Bayesian interpretation of
probability into the AI context.

2.6 Interpretations of probability

The interpretation of probability continues to be a subject of intense de-
bate, with important implications for the practice of probability modelling
and statistical inference, both in general and in expert systems applications.
One major division (Gillies 1994) is between objective and epistemological
understandings of P(A), the probability of an event A — or, more gen-
erally, of P(A| B), the probability of A conditional on the happening of
another event B.

Objective theories regard such probabilities as real-world attributes of
the events they refer to, unrelated to and unaffected by the extent of our
knowledge. Popper’s propensity theory (Popper 1959), for example, in which
prabability measures an innate disposition of an event to occur in identified
circumstances, is one such objective theory. The most influential objective
interpretation has been the frequentist interpretation (Venn 1866; von Mises
1939), in which probabilities of events are defined as limiting proportions
in an infinite ensemble or sequence of experiments. This has been the dom-
inant interpretation of probability for most of this century and forms the
basis of the influential frequentist approach to statistical inference, as de-
veloped by Neyman and Pearson (1967). However, because it only allows
probabilities to be meaningfully assigned to outcomes of strictly repeatable
situations and takes an uncompromising physical view of their nature, its
scope is severely limited. It was the adoption of this specific interpretation
by the early AI pioneers that led to the perception that there were funda-
mental conceptual obstacles to the incorporation of probability theory into
expert systems.

Epistemological theories eschew possibly problematic ‘true probabilities’,
instead regarding P(A | B) as describing a state of mental uncertainty about
A in the knowledge of B, where now A and B can be singular propositions,
as opposed to repeatable events. From this viewpoint the probability calcu-
lus can be considered a generalization of Boolean logic (which historically
came later), allowing numerical quantification of uncertainty about propo-
sitions, and describing how such numerical uncertainties should combine
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and change in the light of new information. Epistemological theories fur-
ther divide into logical theories (Keynes 1921; Jeffreys 1939; Carnap 1950)
and subjectivist theories. Logical theories posit the existence of a unique
rational numerical degree of uncertainty about a proposition A in the light
of information B. However, attractive though this viewpoint may be, no
satisfactory theory or method for the evaluation of logical probabilities has
yet been devised. In recent years the subjectivist interpretation has be-
come popular. This does not impose any particular numerical evaluation
of probabilities, but merely requires that all the probability assessments an
individual makes should ‘cohere’ appropriately. In such a theory, P(A) is a
numerical measure of a particular person’s subjective degree of belief in A,
with probability 1 representing certain belief in the truth of A, and prob-
ability 0 expressing certainty that A is false. Thus, it is more appropriate
to think of P(A) as representing the probability for A — a characteristic
of both A and the person whose probability it is. We can measure a per-
son’s subjective probabilities P(A) or P(A|B) either directly by offering
bets at various odds, or indirectly by observing the subject’s behaviour in
situations whose uncertain consequences depend on the actions he or she
takes.

From a subjectivist standpoint, it is possible to assign probabilities to
individual propositions, or to treat unknown constants or parameters as
random variables, even though there may be no physical stochastic mech-
anism at work. For example, a person could assert “My probability that
the Suez canal is longer than the Panama canal is 0.2.” Clearly, such a
subjective probability must be relative to that person’s degree of back-
ground knowledge or information. Direct frequentist interpretation of such
a probability statement is not possible: there is no stochastic element or
ensemble of relevant repetitions, and so no basis for assigning a frequentist
probability (other than 0 or 1) to the content of the statement. However,
when many subjective probability assessments are made, they do have im-
plications for the behaviour of certain real-world frequencies, which can be
investigated empirically (see Dawid (1986)).

Many authors have sought to justify a subjectivist interpretation and cal-
culus of probability from more basic axiomatic foundations. The influential
approaches of Ramsey (1926), de Finetti (1937), and Savage (1954) (see
also de Finetti (1975), Savage (1971), and Lindley (1982)) are based on a
decision-theoretic interpretation of subjective probability as a determinant
of action, and a principle of coherence, which requires that an individual
should not make a, collection of probability assessments that could put him
in the position of suffering a sure loss, no matter how the relevant uncertain
events turn out. It can then be shown that coherence is attained if and only
if the probability assessments satisfy the standard probability axioms (see
Section 2.7).

Artificial Intelligence researchers often refer to Cox (1946), which was
based on a logical interpretation of probability, but applies equally to a
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subjectivist one. Cox asked: if one agrees that it is possible to assign nu-
merical values to represent degrees of rational belief in a set of propositions,
how should such values combine? He assumed, for instance, the existence
of some function F such that P(C N B|A) = F{P(C|AnN B), P(B| A)}
for any three propositions A, B, and C. He then showed that there must
exist a transformation of the initial numerical belief values to values in
the real interval (0,1], such that the transformed values combine accord-
ing to the rules of the probability calculus. Cox’s paper required certain
differentiability assumptions, but these have been relaxed to assumptions
of continuity only (Aczél 1966); more recently Aleliunas (1990) has pro-
duced a stronger result in a discrete setting. Interestingly, the introduction
of certainty factors into MYCIN was just such an attempt to use numerical
val_ues to represent uncertainty, and, as mentioned in Section 2.4, Heck-
erman (1986) showed that for a consistent interpretation of the way that
certainty factors combine there has to be a monotonic mapping of their
values to ratios of conditional probabilities.

2.7 Axioms

We assume that the reader has had some contact with probability theory,
and we shall use standard results and definitions as required. However, it
is useful to review the basic probability axioms. We can regard these as
applying either to propositions, combining under the logical operations of
the propositional calculus, or to events (subsets of a suitable sample space),
combining according to the operations of set theory. Although the former
interpretation is more intuitive, we shall generally use the more standard
notation and terminology of the latter. For the logical conjunction A& B of
events A and B we may use, interchangeably, AN B or (4, B).

Axiom 1: 0 < P(A) < 1, with P(A4) = 1 if A is certain.

Axiom 2: If events (4;) (i =1,2,...) are pairwise incompatible,

then P(U; A;) = X2, P(Ay).
Axiom 3: P(AN B) = P(B|A)P(A).

These axioms are not quite in the form given in the standard account
by Kolmogorov (1950). Our Axiom 3 relates unconditional and conditional
probabilities, regarded as having independent existence on an equal footing
(indeed, from our viewpoint any ‘unconditional’ probability is only really so
by appearance, the background information behind its assessment having
been implicitly assumed and omitted from the notation). Kolmogorov’s ap-
proach takes unconditional probability as the primitive concept, and would
therefore treat our Axiom 3 as defining conditional probability.
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There is continuing discussion over whether the union in Axiom 2 should
be restricted to finite, rather than countably infinite, collections of events
(de Finetti 1975). For our purposes this makes little difference, and for
convenience we shall assume full countable additivity.

Many other properties of probabilities may be deduced from the axioms,
including Bayes’ Theorem (see Section 2.8), which shows how to inter-
change the outcome and the conditioning events in a conditional probabil-
ity.

In an epistemological approach, all quantities, be they observables or pa-
rameters, are jointly modelled as random variables with a known joint dis-
tribution. Statistical inference then consists simply in calculating the con-
ditional distribution of still unknown quantities, given data. Since Bayes’
theorem is the principal (though not the only) tool for performing such
calculations, this approach to statistics has come to be called ‘Bayesian’.
This in turn has logical and subjectivist branches, although there are dif-
ficulties in constructing a fully consistent logical account (Dawid 1983). A
good account of modern Bayesian statistics may be found in Bernardo and
Smith (1994).

In this book we mostly adopt both the subjectivist interpretation of
probability and the subjectivist Bayesian approach to statistical inference.
However, in later chapters we shall also make use of non-Bayesian statistical
techniques when dealing with model construction and criticism.

2.8 Bayes’ theorem

Bayes’ theorem is the basic tool for making inferences in probabilistic expert
systems. From Axiom 3 and the fact that P(A N B) = P(BN A), we
immediately have

P(ANB) = P(A| B)P(B) = P(B|A)P(4A). (2.1)
By rearrangement we obtain Bayes’ theorem:

P(B|A)P(A)

e (2.2)

P(A|B) =
This can be interpreted as follows. Suppose we are interested in A and we
begin with a prior probability P(A), representing our belief about A before
observing any relevant evidence. Suppose we then observe B. By (2.2),
our revised belief for A, the posterior probability P(A|B), is obtained by
multiplying the prior probability P(A) by the ratio P(B | A)/P(B).

We now extend attention beyond simple events to random wvariables.
Informally, a random variable is an unknown quantity that can take on one
of a set of mutually exclusive and exhaustive outcomes. Such a variable,
say M with values m € M, will have a distribution, its prior distribution

P(M), specifying the probabilities P(m) = P(M = m), m € M. Then
for any value d of another variable D, the expression P(d| M), with values
P(d|m) = P(D = d| M = m), considered as a function of m, is called the
likelihood function for M on data d. The posterior distribution for M given
the data, P(M |d), can then be expressed, using (2.2), by the relationship:

P(M|d) o« Pd|M) x P(M), (2.3)

that is,
Posterior o« Likelihood x Prior,

where the proportionality arises since the denominator P(d) in (2.2) is the
same for all values of M, and can thus be reconstructed as the normalizing
C(f)r}\slftant needed to scale the right-hand side to sum to 1 over all outcomes
of M.

The above discussion assumes that the random variables involved are
discrete, but the identical formula (2.3) continues to hold in the case of
continuous variables (or a mixture of discrete and continuous variables),
so long as, when M (for example) is continuous, we interpret P(m) as the
probability density of M at m. In that case, the normalization constant
P(d) is given by the integral of the right-hand side.

In Figure 2.3 we display this ‘prior-to-posterior inference’ process picto-
rially. Both of the diagrams represent the structure of the joint distribution
P(M, D). Diagram (a) decomposes P(M, D) in terms of its ‘prior’ compo-
nents P(M) and P(D | M): often, we will think of M as a possible ‘cause’
of the ‘effect’ D, and the downward arrow represents such a causal in-
terpretation. Diagram (b) decomposes P(M, D) in terms of its ‘posterior’
components P(M | D) and P(D): the ‘inferential’ upward arrow then rep-
resents an ‘argument against the causal flow’, from the observed effect to

the inferred cause.
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(@) P(M|D)P(D) (o) P(D|M)P(M)

FIGURE 2.3. Bayesian inference as reversing arrows.

A generalization of Figure 2.3 is illustrated in Figure 2.4. Here the vari-
able D represents some unknown member of a set of alternative diseases,
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and influences the chance of the occurrence of each of a set of potential
symptoms or features (F;). We shall see later that this graph encodes an
assumption that the features (F;) are conditionally independent given the
disease D, and hence that the joint distribution of all variables satisfies

i=1

P(D,F,... ,Fg)= (H P(F;]| D)) P(D). (2.4)

This requires as numerical inputs only the distribution for the disease and
the conditional distribution of each of the features in each of the disease
categories. These can be readily estimated if we have a random sample of
‘training data’, in which for each case we observe the disease and some
or all of the features. Calculating the posterior probability of each disease
on the basis of observed findings is extremely straightforward: this simple
model has been termed naive — or even idiot’s — Bayes (Titterington

mod b .
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FIGURE 2.4. Directed graphical model representing conditional independence of
feature variables within each disease class — the naive Bayes model.

The naive Bayes model was first used by Warner et al. (1961) for the
diagnosis of congenital heart disease. Later applications of this model are
too numerous to list, but a notable example is the acute abdominal pain
system (de Dombal et al. 1972), which has been implemented in a number
of hospitals and remote sites such as submarines, and has been claimed to
have a significant impact on care and resources (Adams et al. 1986).

It has been argued that in most applications the assumptions underlying
such a model are blatantly inappropriate. For (2.4) implies that once the
disease class is known information about some feature variables is of no
further relevance to predicting the values of any others. This property of the
model of Figure 2.4 — the independence of features conditional on knowing
the state of D — can be verified by performing the necessary calculations on
the joint probability distribution. However, it can also be deduced simply
from the figure, without knowing explicitly any numerical values attached
to the probabilities of the model. This follows from the theory of Markov
distributions on graphs, to be discussed in Chapter 5, which in turn relies
on some aspects of graph theory described in Chapter 4.
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The model of Figure 2.4 allows a simple use of Bayes’ theorem, since the
conditional independence assumptions mean that each item of evidence can
be considered in turn, with the posterior probability distribution for the
disease after observing each item becoming the prior probability distribu-
tion for the next. Thus, the sparseness of the graph leads directly to a
modular form for the inference.

2.9 Bayesian reasoning in expert systems

Pearl (1982) realized that this modular approach could be generalized to
more complex graphical structures and presented some elegant techniques
for exploiting this vital idea of ‘local computation’ in graphs that are more
complex than Figure 2.4 but still have a tree structure, so that removing
any edge disconnects the graph. A simple example illustrates a number of
points.

Suppose we wish to reason about possible personal computer failure. Let
C be the variable Computer failure?, allowing answers “yes” and “no.” The
possible causes, with their assumed probabilities, are E: Electricity failure?
with P(E = yes) = 0.1, and M: Malfunction?, with P(M = yes) = 0.2. Wei
assume that these possible precipitating events are independent, in that we
have no reason to believe that the occurrence of one should influence the oc-
currence of the other. We also adopt the following conditional probabilities
for failure:

P(C=yes|E=no,M =no) = 0
P(C =yes|E =no,M =yes) = 0.5
P(C =yes|E =yes, M =no) = 1
P(C =yes|E =yes,M =yes) = 1

The left-hand diagram in Figure 2.5 shows a directed graphical model of
this system, with each variable labelled by its current probability of taking
the value “yes” (the value P(C = yes) = 0.19 is calculated below).

Suppose you turn your computer on and nothing happens. Then the event
“C' = yes” has occurred, and you wish to find the conditional probabilities
for E and M, given this computer failure. By Bayes’ theorem,

P(C = yes| E, M) P(E, M)
P(C = yes)

P(E,M|C =yes) = .

The necessary calculations are laid out in Table 2.1. Note that, owing to the

assumed independence, P(E, M) = P(E)P(M). Also P(C = yes, E, M) =

(I]D(C = yes| E, M)P(E, M), and when summed this provides P(C = yes) =
19,
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Electricity failure?

0.53
Electricity failure?
Computer failure? Computer failure?
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FIGURE 2.5. Directed graphical model representing two independent potential
causes of computer failure, with probabilities of a ‘yes’ response before and after
observing computer failure.

By summing over the relevant entries in the joint posterior distribution
of E and M we thus obtain P(E = yes|C = yes) = 0.42+0.11 = 0.53 ax}d
P(M = yes|C = yes) = 0.47 + 0.11 = 0.58. These values are displayed in
the right-hand diagram of Figure 2.5. Note that the observed failure has
induced a strong dependency between the originally independent possible
causes; for example, if one cause could be ruled, out the other must have
occurred.

TABLE 2.1.
E [P(E)] no [0.9] yes [0.1]
M [P(M)] no [0.8] yes [0.2] no [0.8] yes [0.2]
P(E, M) 0.72 0.18 0.08 002 |1
P(C =yes| E,M) 0 0.50 1 1
P(C =yes,E,M) | © 0.09 0.08 0.02 | 0.19
P(E,M|C=yes) | © 0.47 0.42 011 |1

We now extend the system to include the possible failure, denoted by L,
of the light in the room, assuming that such a failure depends only on the
electricity supply, and that

P(L=yes|E=yes) = 1
P(L=yes|E=no) = 02
so that P(L = yes) = P(L = yes| E = yes)P(E = yes) + P(L = yes | E =

no)P(E = no) = 1 x 0.1 4+ 0.2 x 0.9 = 0.28. The extended graph is shown
in Figure 2.6.

0.85 0.33

Computer failure? Light failure? Computer failure?
0.19 1.0 1.0

FIGURE 2.6. Introducing the roomlight into the system, before and after observ-
ing that neither the light nor the computer work.

0.28

Suppose we now find the light does not work (L = yes). Our previous
posterior distribution P(E, M |C = yes) now becomes the prior distribu-
tion for an application of Bayes’ theorem based on observing that the light
has failed. Note that P(L = yes| E, M,C) = P(L = yes| E), since only the
electricity supply directly affects the light. :

TABLE 2.2.

E no yes

. M | no yes no yes
P(E, M| C = yes) 0 047 042 0.1
P(L=yes|E,M,C =yes) | 02 02 1 1
P(L =yes,E,M|C=yes) | 0 0.094 042 0.11 | 0.624
P(E,M|C =yes,L=1yes) | 0 0.15 067 0.18 |1

The calculations are displayed in Table 2.2. We obtain P(E = yes|C =
yes, L = yes) = 0.85, P(M = yes|C = yes, L = yes) = 0.33. Thus, ob-
serving “light off” has increased the chance of “electricity failure,” and
decreased the chance of “malfunction”: the original computer fault has
been erplained away. This ability to withdraw a tentative conclusion on
the basis of further information is extremely difficult to implement within
a system based on logic, even with the addition of measures of uncertainty.
In contrast, it is both computationally and conceptually straightforward
within a fully probabilistic system built upon a conditional independence
structure. '

The above example has heuristically argued for the explanatory power
of probabilistic models based on Bayesian reasoning, following closely the
insights of Pearl (1986b) and Pearl (1988), which largely provided the foun-
dation for probabilistic evidence propagation in complex systems. We have
not directly illustrated the specific techniques developed in these references
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for updating belief on any part of a tree-structured graph given evidence
on any other part, techniques which can be used to organize and streamline
our brute force calculations above. The approach developed in this book is
more general, dealing with graphs with a more complex structure. However,
many parallels with Pearl’s work may be drawn.

The following fictitious example, AsIA , due to Lauritzen and Spiegelhal-
ter (1988), illustrates the nature of the more complex graphical structures
we shall be analysing in this book.

Shortness—of-breath (dyspnoea) may be due to tuberculosis,
lung cancer or bronchitis, or none of them, or more than one of
them. A recent visit to Asia increases the chances of tubercu-
losis, while smoking is known to be a risk factor for both lung
cancer and bronchitis. The results of a single chest X-ray do not
discriminate between lung cancer and tuberculosis, as neither
does the presence or absence of dyspnoea.

Smoking? Visit to Asia?
\. \
Bronchitis? Lung cancer? Tuberculosis?
Either tub. or

lung cancer?

N

Positive

D ea?
yspnoea X-ray?

o dmoi’

FIGURE 2.7. The AsIA network.

The qualitative structure of this example is given in Figure 2.7. Note
that, as opposed to the previous example, Smoking? is connected to Dysp-
noea? via two alternative routes. The quantitative specification is given in
Table 2.3. Here we use B (for example) to denote the variable Bronchitis?,
and b, b respectively for “Bronchitis? = yes,” “Bronchitis? = no.”

The model might be applied to the following hypothetical situation. A
patient presents at a chest clinic with dyspnoea, and has recently visited
Asia. Smoking history and chest X-ray are not yet available. The doctor
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TABLE 2.3. Conditional probability specifications for the ASIA example.

¥

A p(a) = 0.01 L. p(lls) = 01
' p(l|3) = 001
B: p(bls) = 0.6 S: p(s) = 05
p(b]3) = 03
D: p(d|§,e) = 09 T: p(tla) = 0.05
p(d|be) = 0.7 p(tla) = 0.01
p(d|b,e) = 08
p(d|b,e) = 0.1
E: p(elf,t) 1 X: plzle) = 098
ple|l,t) = 1 plz|e) = 0.05
plelly) = 1
plell,l) = o0

would like to know the chance that each of these diseases is present, and
if tuberculosis were ruled out by another test, how would that change the
belief in lung cancer? Also, would knowing smoking history or getting an
X-ray contribute more information about cancer, given that smoking may
‘explain away’ the dyspnoea since bronchitis is considered a possibility?
Finally, when all information is in, can we identify which was the most
influential in forming our judgement?

2.10 A broader context for probabilistic expert
systems

We have informally introduced the idea of representing qualitative relation-
ships between variables by graphs and superimposing a joint probability
model on the unknown quantities. When the graph is directed and does not
contain any (directed) cycles, the resulting system is often called a Bayesian
network, although later we shall see how broader classes of graphs may be
used. Using the terms introduced earlier, we may think of this network and
its numerical inputs as forming the knowledge base, while efficient meth-
ods of implementing Bayes’ theorem form the inference engine used to draw
conclusions on the basis of possibly fragmentary evidence.
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While Bayesian networks have now become a standard tool in artificial
intelligence, it is important to place them in a wider context of what might
be called highly structured stochastic systems (HSSS). This broad term at-
tempts to bring together areas in which complex interrelationships can be
expressed by local dependencies, and hence a graphical representation can
be exploited both to help communication and as a basis for computational
algorithms. We are led paturally to a unifying system of Bayesian reason-
ing on graphical structures: by embedding apparently unrelated topics in
this common framework, strong similarities are revealed which can lead to
valuable cross-fertilization of ideas. Further information can be found on
the HSSS Web page (see Appendix C).

A natural example area is genetics, in which familial relationships form
the basis for the graph and Mendelian laws of inheritance and relation-
ships between genotype and phenotype provide the elements of the prob-
ability distribution. The ‘peeling’ algorithm for pedigree analysis derived
by Cannings et al. (1978) was shown by Spiegelhalter (1990) to be very
similar to the local computation algorithm of Lauritzen and Spiegelhalter
(1988). Similarly, much of image analysis is dominated by Markov field
models which are defined in terms of local dependencies and can be de-
scribed graphically (Besag and Green 1993), although simulation meth-
ods are generally required for inference. Such spatial models are also used
in geographical epidemiology (Bernardinelli et al. 1997) and agricultural
field trials (Besag et al. 1995). Within the artificial intelligence community,
neural networks are natural candidates for interpretation as probabilistic
graphical models, and are increasingly being analysed within a Bayesian
statistical framework (see, for example, Neal (1996)). Hidden Markov mod-
els, which form the basis for work in such diverse areas as speech recognition
(Rabiner and Juang 1993) and gene sequencing (Durbin et al. 1998), can
likewise be considered as special cases of Bayesian networks (Smyth et al.
1997).

Further reading

Recent years have seen an explosion of interest in graphical models as a
basis for probabilistic expert systems, with a number of dedicated books
and a wide range of theoretical and practical publications. Textbooks on
probabilistic expert systems include the classic Pearl (1988). Neapolitan
(1990) explains the basic propagation algorithms, and these are studied in
detail by Shafer (1996). Jensen (1996) is a very good tutorial introduction,
while Castillo et al. (1997) provides another sound introduction with many
worked examples.

Perhaps the best guide to current research is to be found in the Proceed-
ings of the annual meeting of the Association for Uncertainty in Artificial

I_utelligence, which hosts an excellent Web page providing many relevant
11nk§, and provides a forum for discussion of a wide range of issues con-
cerning uncertainty in expert systems (although the arguments between
the ad'vocates of probabilistic and non-probabilistic approaches appear to
hav? died down as each group tries to identify the most appropriate domai
for its work). Other electronic sources of information include the Ba; esi:zlz
netwc?rk Web page of the US Air Force Institute of Technology Arg,iﬁci 1
Intelligence Laboratory, which in particular features informal comments aLf
people who work in industry, and the Web page of the Microsoft DeCiSiOCil
Theory an'd Adaptive Systems group. See Appendix C for addresses and
more details. Appendix C also details some free and commercial sof
available over the World Wide Web. rotare
cher good sources of tutorial material are the special issues of AT Ma
azine (Charniak 1991; Henrion et al. 1991) and of the Communicati o
the ACM (Heckerman and Wellman 1995). wtions of

See also Section 3.5 for some poi i
e al . pointers to various implementati
applications of probabilistic expert systems. g tons and



